Approach 1:
4, 6, 9 are in GP
⇒ \(\log_{x}4, \; \log_{x}6, \; \log_{x}9 \) are in AP
⇒ \(\log_{4}x, \; \log_{6}x, \; \log_{9}x \) are in HP
⇒ 2n, kn, 4n are in HP
⇒ 2, k, 4 are in HP
⇒ \( k = \frac{2 \times 2 \times 4}{2 + 4} \)
Approach 2:
If the given ratios is equal to n, then
\(\log_{4}x=2n \implies \log_{x}4=\frac{1}{2n}\)
Similarly, \(\log_{x}6=\frac{1}{kn}\) and \(\log_{x}9 =\frac{1}{4n}\)
Next, 62 = 4 × 9 \(\implies 2\log_{x}6 = \log_{x}4 + \log_{x}9\)
i.e. \(\frac{2}{kn} = \frac{1}{2n} + \frac{1}{4n} \)
The n gets cancelled from all terms and you should be able to solve it to get value of k.
Leave A Comment