Functions Let f(x)=x2+1x2−1, if x≠1,−1, and 1 if x=1,−1. Let g(x)=x+1x−1 if x≠1 and 3 if x=1. What is the minimum possible value of f(x)g(x) ? A. 1 B. -1 C. 1/4 D. 1/3 Answer D. 1/3 Explanation f(x)g(x)=(x2+1)(x−1)(x2−1)(x+1)=(x2+1)(x+1)2 i.e x cannot be -1 we observe when x=1(which is possible here), we get f(x)=1 and g(x)=3 Hence, f(x)g(x)=13 Nikita Singla2023-09-22T11:26:15+05:30August 2, 2023| Share This Story, Choose Your Platform! FacebookTwitterRedditLinkedInWhatsAppTumblrPinterestVkXingEmail About the Author: Nikita Singla Leave A Comment Cancel replyComment
Leave A Comment