Let f(x)=x2+1x21, if x1,1, and 1 if x=1,1. Let g(x)=x+1x1 if x1 and 3 if x=1.
What is the minimum possible value of f(x)g(x) ?

A. 1

B. -1

C. 1/4

D. 1/3

D. 1/3

f(x)g(x)=(x2+1)(x1)(x21)(x+1)=(x2+1)(x+1)2

i.e x cannot be -1

we observe when x=1(which is possible here), we get f(x)=1 and g(x)=3

Hence, f(x)g(x)=13