Let $\mathrm{f}(\mathrm{x})=\frac{x^2+1}{x^2-1}$, if $\mathrm{x} \neq 1,-1$, and 1 if $\mathrm{x}=1,-1$. Let $\mathrm{g}(\mathrm{x})=\frac{x+1}{x-1}$ if $\mathrm{x} \neq 1$ and 3 if $x=1$.
What is the minimum possible value of $\frac{f(x)}{g(x)}$ ?
A. 1
B. -1
C. 1/4
D. 1/3
Leave A Comment