For roots we know, \(\alpha+\beta=\frac{-b}{a} \) and \(\alpha\beta=\frac{c}{a} \)
and we know \(\beta =5\alpha\), substituting this in the above relations we get
\(\Rightarrow 6\alpha=\frac{-b}{a} \) [∵ \(5\alpha+\alpha=6\alpha\)]
\(36{\alpha}^{2}=\frac{{-b}^{2}}{{a}^{2}} ………\text{(i)}\)
\(\Rightarrow\alpha\beta=\frac{c}{a} \)
\({5\alpha}^{2}=\frac{c}{a}\) [∵ \(\alpha\times5\beta={5\alpha}^{2}\)]
\({\alpha}^{2}=\frac{c}{5a}………\text{(ii)}\)
⇒ combining (i) and (ii) we get,
\(36\times\frac{c}{5a}=\frac{{b}^{2}}{{a}{2}}\)
\(36ac=5{b}^{2}\)
Leave A Comment