Number of solutions to a equation in log Q. The equation \(\log_{x}{3}-\log_{3}{x}=2\) has A. no real solution B. exactly one real solution C. exactly two real solutions D. infinitely many real solutions Answer C. exactly two real solutions Explanation \(\log_{3}{x}-\log_{x}{3}=2\) \(\log_{3}{x}-\frac{1}{\log_{3}{x}}=2\) Let \(\log_{3}{x}=K\) \(K-\frac{1}{K}=2\) \({K}^{2}-2K-1=0\) \(K=\frac{-(-2)\pm\sqrt{{-2}^{2}-4(1)(-1)}}{2(1)}\) \(K=\frac{2\pm\sqrt{8}}{2}\) \(K=\frac{2\pm2\sqrt{2}}{2}\) \(K=1+\sqrt{2}\) OR \(K=1-\sqrt{2}\) Two real solutions Dhaval Kakkad2023-09-22T11:26:29+05:30July 31, 2023| Share This Story, Choose Your Platform! FacebookTwitterRedditLinkedInWhatsAppTumblrPinterestVkXingEmail About the Author: Dhaval Kakkad Leave A Comment Cancel replyComment
Leave A Comment